Содержание
Цифры в различных системах счисления
Шестнадцатеричная система – 6b.
Двоичная система – 1101011.
Посмотрите так же как пишутся десятичные цифры 99, 94, 57, 631, 763, 801, 766, 584, 4766, 6892, 3071, 52228, 4619, 598067, 927303 в различных системах счисления.
Число 107 в других системах счисления:
2 – 1101011, 3 – 10222, 4 – 1223, 5 – 412, 6 – 255, 7 – 212, 8 – 153, 9 – 128, 10 – 107, 11 – 98, 12 – 8b, 13 – 83, 14 – 79, 15 – 72, 16 – 6b, 17 – 65, 18 – 5h, 19 – 5c, 20 – 57, 21 – 52, 22 – 4j, 23 – 4f, 24 – 4b, 25 – 47, 26 – 43, 27 – 3q, 28 – 3n, 29 – 3k, 30 – 3h, 31 – 3e, 32 – 3b.
Поставить LIKE | и поделиться ссылкой |
|
Результат: | |
1101011.10101011000 Показать как оно получилось |
Ура. Вам стало интересно как получилось данное число
Вы ввели число: 107.66810 в десятичной системе счисления и хотите перевести его в двоичную.
Переведем 107.66810 в двоичную систему вот так:
Целая часть числа находится делением на основание новой
107 | 2 | |||||
-106 | 53 | 2 | ||||
1 | -52 | 26 | 2 | |||
1 | -26 | 13 | 2 | |||
0 | -12 | 6 | 2 | |||
1 | -6 | 3 | 2 | |||
0 | -2 | 1 | ||||
1 | ||||||
Получилось: 10710 = 11010112
Дробная часть числа находится умножением на основание новой
0 | .668 |
. | 2 |
1 | 336 |
2 | |
0 | 672 |
2 | |
1 | 344 |
2 | |
0 | 688 |
2 | |
1 | 376 |
2 | |
0 | 752 |
2 | |
1 | 504 |
2 | |
1 | 008 |
2 | |
0 | 016 |
2 | |
0 | 032 |
2 | |
0 | 064 |
2 |
Получилось: 0.6680000000000110 = 0.101010110002
Сложим вместе целую и дробную часть вот так:
11010112 + 0.101010110002 = 1101011.101010110002
Результат перевода:
107.66810 = 1101011.101010110002
Постоянная ссылка на результат этого расчета
- Введите число которое надо перевести.
- Укажите его систему счисления.
- Укажите в какую систему счисления переводить.
- Нажмите кнопку "Перевести".
Калькулятор перевода чисел имеет одно поле для ввода. В это поле необходимо ввести число которое Вы хотите перевести.
После этого Вам обязательно нужно указать в какой системе счисления Вы его ввели. Для этого под полем ввода есть графа "Его система счисления".
Если Вы не нашли своей системы, то выберите графу "другая" и появится поле ввода . В это поле необходимо вписать основание системы одним числом без пробелов.
Далее необходимо выбрать в какую систему хотите перевести данное число. Если Вы опять не нашли нужной системы то введите ее в графе "другая".
После нажмите кнопку "ПЕРЕВЕСТИ" и результат появится в соответствующем поле. Если Вы хотите получить подробный ход решения, то нажмите на соответствующую ссылку.
Научиться переводить число из одной системы счисления в другую очень просто.
Любое число может быть легко переведено в десятичную систему по следующему алгоритму:
Каждая цифра числа должна быть умножена на основание системы счисления этого числа возведенное в степень равное позиции текущей цифры в числе справа налево, причём счёт начинается с 0.
С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку "Перевести". Теоретическую часть и численные примеры смотрите ниже.
Предупреждение
Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения
Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:
число | 6 | 3 | 7 | 2 |
позиция | 3 | 2 | 1 | 0 |
Тогда число 6372 можно представить в следующем виде:
6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .
Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.
Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:
число | 1 | 2 | 8 | 7 | . | 9 | 2 | 3 |
позиция | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Тогда число 1287.923 можно представить в виде:
1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .
В общем случае формулу можно представить в следующем виде:
где Цn-целое число в позиции n, Д-k– дробное число в позиции (-k), s – система счисления.
Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр <0,1,2,3,4,5,6,7,8,9>, в восьмеричной системе счисления – из множества цифр <0,1,2,3,4,5,6,7>, в двоичной системе счисления – из множества цифр <0,1>, в шестнадцатеричной системе счисления – из множества цифр <0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F>, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.
В таблице Таб.1 представлены числа в разных системах счисления.
Таблица 1 | |||
---|---|---|---|
Система счисления | |||
10 | 2 | 8 | 16 |
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Перевод чисел из одной системы счисления в другую
Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.
Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:
1·2 6 + 0 ·2 5 + 1·2 4 + 1·2 3 + 1·2 2 + 0·2 1 + 1·2 0 + 0·2 -1 + 0·2 -2 + 1·2 -3 =64+16+8+4+1+1/8=93.125
Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:
Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:
Здесь A -заменен на 10, B – на 11, C- на 12, F – на 15.
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.
Целую часть числа переводится из десятичной СС в другую систему счисления – последовательным делением целой части числа на основание системы счисления (для двоичной СС – на 2, для 8-ичной СС – на 8, для 16-ичной – на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.
Пример 4. Переведем число 159 из десятичной СС в двоичную СС:
159 | 2 | ||
158 | 79 | 2 | |
1 | 78 | 39 | 2 |
1 | 38 | 19 | 2 |
1 | 18 | 9 | 2 |
1 | 8 | 4 | 2 |
1 | 4 | 2 | 2 |
0 | 2 | 1 | |
0 |
Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:
Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.
615 | 8 | ||
608 | 76 | 8 | |
7 | 72 | 9 | 8 |
4 | 8 | 1 | |
1 |
При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:
Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.
19673 | 16 | ||
19664 | 1229 | 16 | |
9 | 1216 | 76 | 16 |
13 | 64 | 4 | |
12 |
Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 – D. Следовательно наше шестнадцатеричное число – это 4CD9.
Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.
Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).
Рассмотрим вышеизложенное на примерах.
Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.
0.214 | |
x | 2 |
0 | 0.428 |
x | 2 |
0 | 0.856 |
x | 2 |
1 | 0.712 |
x | 2 |
1 | 0.424 |
x | 2 |
0 | 0.848 |
x | 2 |
1 | 0.696 |
x | 2 |
1 | 0.392 |
Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0. 0011011.
Следовательно можно записать:
Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.
0.125 | |
x | 2 |
0 | 0.25 |
x | 2 |
0 | 0.5 |
x | 2 |
1 | 0.0 |
Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:
Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.
0.214 | |
x | 16 |
3 | 0.424 |
x | 16 |
6 | 0.784 |
x | 16 |
12 | 0.544 |
x | 16 |
8 | 0.704 |
x | 16 |
11 | 0.264 |
x | 16 |
4 | 0.224 |
Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:
Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.
0.512 | |
x | 8 |
4 | 0.096 |
x | 8 |
0 | 0.768 |
x | 8 |
6 | 0.144 |
x | 8 |
1 | 0.152 |
x | 8 |
1 | 0.216 |
x | 8 |
1 | 0.728 |
Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:
Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим: