Меню Рубрики

Заземление в сетях с изолированной нейтралью

Содержание

Известно, что в кабельных и воздушных линиях питания трансформаторных подстанций действуют высокие напряжения, при передаче которых особо важно соблюдать меры предосторожности. Подобно системам энергоснабжения 380 Вольт высоковольтные линии (ВЛ) включаются по схемам, обеспечивающим эффективную защиту от поражения действующими в цепи напряжениями.

При этом в соответствии с требованиями ПУЭ нейтральная точка питающего трансформатора (нейтраль) чаще всего надёжно заземляется, то есть подключается к специально обустроенному для этих целей заземляющему устройству – ЗУ.

Способы включения нейтрали

Специфика работы высоковольтных (ВВ) систем состоит в том, что в случае обрыва или повреждения линии, сопровождающегося замыканием отдельного провода на землю, токи утечки могут достигать очень больших величин.

В соответствии с этим защитные меры, предпринимаемые в таких сетях, заметно отличаются от аналогичных действий в цепях конечного потребителя.

Для сетей 6-35 киловольт характерны перечисленные ниже режимы заземления нейтрали:

  • прямое соединение с ЗУ, обустроенным непосредственно у подстанции или у высоковольтной опоры (глухозаземленная нейтраль заземления);
  • подключение через специальный дугогасящий реактор или компенсатор;
  • использование для этих целей системы заземления, при которой нейтраль подключается через резистор;
  • без подключения к ЗУ в границах защищаемой линии или объекта (изолированная нейтраль).

Установка специальных компенсационных элементов в цепи включения нейтрального проводника способствует снижению емкостных составляющих токов замыкания.

В процессе работы такой цепочки эти токи удаётся нейтрализовать за счёт плавного изменения индуктивности катушки, напряжение в которой имеет обратную фазу.

При определённом значении индуктивности ток в точке замыкания заземлителя на землю снижается до нулевого значения. Для повышения эффективности действия такого заземления параллельно индуктивности включается резистор, обеспечивающий условия для стекания активной составляющей тока, используемой для срабатывания высоковольтного реле защиты. Остальные варианты включения нейтрали будут рассмотрены отдельно ниже.

Каждая из этих схем предполагает обязательное устройство на приёмной стороне отдельного ЗУ, обеспечивающего повторное заземление нейтрали и создающего безопасные условия эксплуатации ВЛ.

Без этого устройства используемые схемы включения не могут эффективно выполнять свои защитные функции, поскольку при случайном обрыве нейтрального проводника силовое оборудование подстанций останется незащищённым.

Возможен ещё один вариант, при котором заземление нейтрали в сетях 6-35 кВ осуществляется через включение общей точки в питающую сеть, называемый эффективным заземлением и реализуемый через создание практически идеальных условий для стекания тока в землю.

Однако он считается слишком дорогостоящим и применяется обычно лишь на питающих подстанциях с входными напряжениями 110 киловольт и выше.

Системы с изолированной от земли нейтралью

Режим работы сетей с изолированной нейтралью достаточно распространён в большинстве регионов России. При этом способе подключения нейтральная точка питающего генератора (трансформатора) с расположением обмоток по схеме «треугольник» остаётся незаземлённой.

Причиной востребованности рассматриваемого варианта является то, что при этой схеме включения нейтрали любое замыкание фазы на землю не может считаться коротким (из-за отсутствия связи через грунт).

Причём в таком аварийном режиме высоковольтная сеть может работать без особого ущерба в течение нескольких часов.

К другим достоинствам этой схемы следует отнести малые токи в месте замыкания одной фазы на землю (ОЗЗ) по причине незначительной ёмкости сети относительно грунта.

Важно! Токи ОЗЗ при данном варианте включения значительно меньше, чем в случае межфазных замыканий, что является ещё одним достоинством этих сетей.

В связи с этим такие системы не нуждаются в специальных быстродействующих средствах защиты от ОЗЗ, что значительно сокращает затраты на их эксплуатацию.

К числу существенных недостатков такого подключения следует отнести:

  • возможность образования перенапряжений с дуговыми эффектами и относительно небольшими токами (до десятков ампер) в точке ОЗЗ;
  • связанная с этим возможность повреждения кабельного или ВВ оборудования по причине разрушения изоляции вследствие дуговых перенапряжений;
  • требование учёта повышенного (линейного 380 Вольт) напряжения при необходимости надёжно изолировать линейное электрооборудование;
  • трудность выявления точного места повреждения.

Таким образом, перед выбором этого способа подключения нейтрали должны быть учтены все «за» и «против», а также просчитаны возможные последствия аварийных режимов.

Через низкоомное сопротивление

Заземление нейтрали с помощью небольшого по номинальной величине резистора широко практикуется лишь в нескольких странах (в России и Белоруссии, в частности).

При этом более логичным кажется использование в этих цепях высокоомного резистора (RB-режим), обеспечивающего низкий уровень перенапряжений в режиме ОЗЗ.

Другие типы заземления нейтрали предполагают использование комбинированных вариантов её подключения с использованием индуктивности (LB плюс RB-режимы).

Но при внимательном исследовании этих подходов выясняется, что высокоомные резисторы отличаются не только значительными габаритами, но и имеют приличную массу и стоимость.

Рассмотренный выше вариант установки дугогасящих реакторов также имеет свои особенности и характерные для него недостатки.

Вследствие этого перед выбором режима с низкоомным резистором должны быть проведены всесторонние исследования и расчёты, учитывающие все указанные выше факторы.

Известны два способа реализации низкоомного заземления, один из которых предполагает установку в этих цепях резистивного элемента, обеспечивающего срабатывание защиты по току при ОЗЗ.

При втором подходе используется заземлённые через индуктивность схемы, рассчитанные на защиту от двойных фазных замыканий.

Резистивный вариант учитывает дополнительные токовые составляющие в нейтрали, превышающие ёмкостные значения ОЗЗ приблизительно в 3 и более раз.

Читайте также:  Гараж бюджетный вариант своими руками

В схемах с реактивным (индуктивным) заземлением уровень этих составляющих не должен превышать суммы значений токов срабатывания от двойных замыканий и ёмкостного КЗ при ОЗЗ.

Отметим также, что согласно ПУЭ рассматриваемые режимы работы принято делить на кратковременные и длительные. В последнем случае элементы заземления размещаются в цепочке соединения с нейтралью на постоянной основе.

Использование этого способа подключения в соответствии с требованиями безопасности допускается лишь при достаточно качественном заземлении (RЗ ≤ 0,5 Ома), что нецелесообразно как по экономическим соображениям, так и по трудовым затратам.

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.

Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Читайте также:  Дом от границы соседнего участка снип

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети. Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения. К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
  • I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ). Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются. Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации. Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена. Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

В процессе производства, преобразования, транспортировки, распределения и потребления электроэнергии используется трехфазная симметричная система проводов. Достичь такой симметричности стало возможно путем приведения фазных и линейных напряжений в одинаковое состояние. В результате, на всех фазах образуется равномерная токовая загрузка, а также одинаковый сдвиг фаз токов и напряжений.

Читайте также:  Армирование углов ленточного фундамента снип

Однако во время функционирования всей этой системы рано или поздно возникают аварийные ситуации в виде обрыва провода, пробоя изоляции и прочих специфических неисправностей, приводящих к нарушениям симметрии трехфазной системы. Последствия таких нарушений должны быть устранены как можно скорее. Большую роль в этом играет степень быстродействия релейной защиты, на работу которой влияет изолированная и глухозаземленная нейтраль. Каждый из этих режимов имеет свои достоинства и недостатки и применяется в наиболее подходящих условиях. В любом случае от их состояния во многом зависит нормальное функционирование релейной защиты.

Изолированная нейтраль

Изолированная нейтраль нашла достаточно широкое применение в отечественных энергетических системах. Данный способ заземления применяется для генераторов или трансформаторов. В этом случае их нейтральные точки не соединяются с заземляющим контуром. В распределительных сетях на 6-10 киловольт нейтральной точки может не быть вообще, поскольку соединение трансформаторных обмоток выполняется методом треугольника.

В соответствии с ПУЭ, режим изолированной нейтрали может быть ограничен емкостным током, представляющим собой ток однофазного замыкания на землю сети. Его компенсация с помощью дугогасящих реакторах предусматривается при следующих значениях:

  • Ток свыше 30 ампер, напряжение 3-6 киловольт;
  • Ток свыше 20 ампер, напряжение 10 киловольт;
  • Ток свыше 15 ампер, напряжение 15-20 киловольт;
  • Ток свыше 10 ампер, напряжение 3-20 киловольт, с металлическими и железобетонными опорами воздушных ЛЭП
  • Все электрические сети с напряжением 35 киловольт.
  • В блоках «генератор-трансформатор» при токе 5 ампер и генераторном напряжении 6-20 киловольт.

Компенсация тока замыкания на землю может быть заменена резистивным заземлением нейтрали с помощью резистора. В этом случае алгоритм действия релейной защиты будет изменен. Впервые заземление в режиме изолированной нейтрали было применено в электроустановках со средним значением напряжения.

Достоинства и недостатки изолированной нейтрали

Несомненным достоинством режима изолированной нейтрали является отсутствие необходимости быстрого отключения первого однофазного замыкания на землю. Кроме того, в местах повреждений образуется малый ток, при условии малой токовой емкости на землю.

Однако этот режим имеет ряд существенных недостатков, из-за которых его использование существенно ограничено.

Основные недостатки изолированной нейтрали:

  • Возможные дуговые перенапряжения перемежающегося характера дуги малого тока в месте однофазного замыкания на землю.
  • Повреждения могут возникнуть во многих местах по причине пробоя изоляции на других соединениях, где возникают дуговые перенапряжения. По этой причине выходят из строя сразу многие кабели, электродвигатели и другое оборудование.
  • Дуговые перенапряжения воздействуют на изоляцию в течение продолжительного времени. В результате, в ней постепенно накапливаются дефекты, что приводит к снижению срока эксплуатации.
  • Все электрооборудование необходимо изолировать на линейное напряжение относительно земли.
  • Места повреждений довольно сложно обнаружить.
  • Реальная опасность поражения людей электротоком в случае продолжительного замыкания на землю.
  • При однофазных замыканиях не всегда может быть обеспечена правильная работа релейной защиты, поскольку значение реального тока замыкания полностью связано с режимом работы сети, в частности, с количеством включенных присоединений.

Таким образом, большое количество недостатков перекрывает все достоинства данного режима заземления. Однако в определенных условиях этот метод считается достаточно эффективным и не противоречит требованиям ПУЭ.

Глухозаземленная нейтраль

Более прогрессивным способом считается режим глухозаземленной нейтрали. В этом случае нейтраль генератора или трансформатора непосредственно соединяется с заземляющим устройством. В некоторых случаях соединение осуществляется с использованием малого сопротивления, например, трансформатора тока. В отличие от защитного, такое заземление нейтрали называется рабочим. Значение сопротивления заземляющих устройств, соединенных с нейтралью, не должно превышать 4 Ом в электроустановках с напряжением 380/220 вольт.

В электроустановках, где используется глухозаземленная нейтраль, поврежденный участок должен быстро и надежно отключаться в автоматическом режиме в случае возникновения замыкания между фазой и заземляющим проводником. С связи с этим, при напряжении до 1000 вольт, корпуса оборудования должны обязательно соединяться с заземленной нейтралью установок. Таким образом, обеспечивается быстрое отключение поврежденного участка в случае короткого замыкания с помощью реле максимального тока или предохранителя.

Особенности глухого заземления

Заземление нейтрали в глухом режиме предусмотрено для четырехпроводных сетей переменного тока. В таких случаях выполняется глухое заземление нулевых выводов силовых трансформаторов. Соединяются все части, подлежащие заземлению и нулевой заземленный вывод. Нулевой провод должен быть цельным, без предохранителей и каких-либо разъединяющих приспособлений.

В качестве глухозаземленной нейтрали воздушных линий с напряжением до 1 киловольта используется нулевой провод, прокладываемый вместе с фазными линиями на тех же опорах.

Все ответвления или концы воздушных линий, длиной свыше 200 метров подлежат повторному заземлению нулевого провода. То же самое касается вводов в здания, где имеются установки, подлежащие заземлению. В качестве естественных заземлителей могут использоваться железобетонные опоры, а также заземляющие устройства, защищающие от грозовых перенапряжений.

Таким образом, изолированная и глухозаземленная нейтраль обеспечивает нормальную работу релейной защиты генераторов и трансформаторов. Кроме того, они надежно защищают людей от поражения электрическим током.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *