Меню Рубрики

Главным условием излучения электромагнитных волн является наличие

Как уже было сказано, в электромагнитной волне прояв­ляется взаимная связь электрического и магнитного полей: изменение одного из них вызывает по­явление другого.

Возникновение электрического поля в результате изме­нения магнитного есть не что иное, как явление электро – магнитной индукции, открытое на опыте М. Фарадеем в1831 г. Обратное же явление— возникновение магнитного поля при всяком изменении электрического — было теоретически предсказано англий­ским физиком Джеймсом Клерком Максвеллом (1831— 1879). Исходя из предположения о существовании такого явления, Максвелл и пришел к выводу о необходимости возникновения электромагнитных волн при всяком изме­нении электромагнитного поля.

Теоретическое предположение Максвелла требовало про­верки на опыте. Если опыт докажет существование таких электромагнитных волн, то этим будет подкреплен весь ход теоретических рассуждений Максвелла, включая и его пред­положение о возникновении магнитного поля при изменении поля электрического. Для успеха опытной проверки теории очень важно, чтобы наблюдаемые явления были достаточно интенсивными.

Согласно теории Максвелла индукция магнитного поля, возникающего при изменении электрического поля, тем больше, чем быстрее происходят изменения электриче­ского поля. Положение здесь такое же, как и в явлении электромагнитной индукции, где напряженность электри­ческого поля, возникающего при изменении магнитного поля, тем больше, чем быстрее меняется магнитное поле. Таким образом, необходимым условием образования ин­тенсивных электромагнитных волн является достаточ­но высокая частота электрических колебаний. Для успеха опытов низкая частота городского тока (50 Гц) совершенно недостаточна. Необходимы гораздо более высокие частоты электрических колебаний.

Такие частоты, доходящие до десятков мегагерц и более, осуществляются, как мы знаем, при колебаниях в электри­ческих контурах. Однако и в опытах с такими контурами обнаружить электромагнитные волны было бы очень нелегко.

Дело в том, что высокая частота электрических колеба­ний в какой-либо цепи, будучи необходимым условием для получения сильных электромагнитных полей, еще не яв­ляется достаточным условием для хорошего излучения элек­тромагнитных волн этой цепью.

Причина заключается в том, что колебательный контур представляет собой почти замкнутую цепь, размеры которой малы по срав­нению с длиной волны, со­ответствующей частоте колебаний контура. В такой цепи для каждо­го ее участка с одним направлением тока или знаком заряда можно подыскать другой близкий участок, в котором в тот же момент времени направление тока или знак заряда противоположны. Возь­мем, например, один из витков катушки индуктивности (рис. 114). В любых диаметрально противоположных участ­ках а и b витка во всякий момент времени токи направлены противоположно друг другу. Следовательно, на больших расстояниях от витка участки а и b действуют как два близких противофазных излучателя. Волны, излученные этими двумя участками, всюду ослабля­ют друг друга подобно излучению двух ножек камертона. Так как весь виток состоит из таких пар про­тивофазных излучателей, то и виток в целом излучает плохо, а значит, плохо излучает и вся катушка. Аналогично обстоит дело и с конденсатором контура: в любой момент времени заряды обкладок равны по модулю и противоположны по знаку, причем эти разноименные заряды удалены друг от друга гораздо меньше, чем на пол­волны.

Из сказанного ясно, какой должна быть электрическая цепь, чтобы она могла хорошо излучать: необходимо перейти к незамкнутой (открытой) цепи, в которой либо нет участков с противофазными колеба­ниями, либо же расстояние между ними не мало по сравнению с λ.

Вопросы к тексту: (предварительно целиком прочитать текст)

1. Приведите примеры механических волн.

2. С какими скоростями звуковая волна распространяется в воде и в воздухе?

3. Что называется электромагнитными волнами?

4. Чем обусловлена связь между соседними участками электромагнитного поля?

5. В каких средах могут распространяться электромагнитные волны?

Читайте также:  Беспроводной выключатель света с алиэкспресс

6. Что такое свет?

7. Каким образом можно подтвердить, что электромагнитные волны могут распространяться в вакууме?

8. Укажите основное свойство электромагнитных волн.

9. Кто изобрел радио и в каком году?

10. Приведите примеры использования радиоволн.

11. Приведите примеры использования электромагнитных волн.

12. Укажите основную закономерность любой волны.

13. Укажите, каким образом происходит распространение электромагнитной волны?

14. Каким образом можно получить электромагнитную волну?

15. Укажите условия хорошего излучения электромагнитных волн.

Дата добавления: 2016-05-11 ; просмотров: 955 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Различные виды механических волн, как поперечных, так и продольных, объединяет одно общее свойство: они могут распространяться только в непрерывной среде, только в твердых телах, жидкостях или газах. В вакууме, т. е. в пустоте, механические волны распространяться не могут.

Английский физик Джеймс Максвелл (1831—1879) на основании изучения экспериментальных работ Фарадея по электричеству и магнетизму в 1864 г. высказал гипотезу о существовании в природе особых волн, способных распространяться в вакууме. Эти волиы Максвелл назвал электромагнитными волнами.

Для выдвижения гипотезы о возможности возникновения электромагнитных волн Максвелл имел следующие основания. В 1831 г. Фарадей установил, что любое изменение магнитного потока в контуре вызывает появление в нем индукционного тока. Максвелл объяснил появление индукционного тока возникновением вихревого электрического поля при любом изменении магнитного поля. Далее он предположил, что электрическое поле обладает такими же свойствами: при любом изменении электрического поля в окружающем пространстве возникает вихревое магнитное поле. Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен далее непрерывно продолжаться и захватывать все новые и новые области в окружающем пространстве (рис. 238).

Процесс распространения переменных магнитного и электрического полей и есть электромагнитная волна. Связь направлений векторов напряженности

электрического поля и индукции магнитного поля при возрастании напряженности и индукции представлена на рисунке 239, а и б. При убывании напряженности и индукции соответствующие векторы имеют противоположное направление.

Электрическое и магнитное поля могут существовать не только в веществе, но и в вакууме. Поэтому должно быть возможным распространение электромагнитной волны в вакууме.

Условие возникновения электромагнитных волн.

Изменения магнитного поля происходят при изменении силы тока в проводнике, а сила тока в проводнике изменяется при изменении скорости движения электрических зарядов в нем, т. е. при движении зарядов с ускорением. Следовательно, электромагнитные волны должны возникать при ускоренном движении электрических зарядов.

Скорость распространения электромагнитных волн в вакууме по расчетам Максвелла должна быть равной примерно 300 000 км/с.

Открытие электромагнитных волн.

Электромагнитные волны были впервые экспериментально обнаружены немецким физиком Генрихом Герцем (1857—1894) в 1887 г. В его опытах ускоренное движение электрических зарядов возбуждалось в двух металлических стержнях с шарами на концах. При сообщении шарам достаточно больших разноименных зарядов между ними происходил электрический разряд. В результате шары перезаряжались, между ними вновь проскакивала искра и т. д. — процесс повторялся многократно, т. е. возникали электрические колебания.

Стержни с шарами на концах обладают определенной индуктивностью и электроемкостью и представляют собой электрический колебательный контур. Поместив на некотором расстоянии от этого контура контур из проволоки с двумя шарами на концах, Герц обнаружил, что при проскакивании искры между шарами колебательного контура возникает искра и между шарами на концах витка провода (рис. 240). Следовательно, при электрических колебаниях в открытом контуре в пространстве вокруг него образуется вихревое электрическое поле. Это поле создает электрический ток во вторичном контуре.

При постепенном удалении вторичного контура от первичного искры между шарами возникали только при расположении контура в определенных местах

Читайте также:  Авокадо как его вырастить из косточки

пространства, разделенных одинаковыми расстояниями. Этот факт Герц объяснил явлением интерференции излученных электромагнитных волн с электромагнитными волнами, отраженными от стены комнаты.

Искры во вторичном контуре наблюдались в тех местах комнаты, в которые первичная и отраженная электромагнитные волны приходили в одинаковой фазе и амплитуда колебаний напряженности вихревого электрического поля была максимальной. Расстояние между двумя соседними интерференционными максимумами равно половине длины волны.

По известной частоте электромагнитных колебаний в контуре и измеренному значению длины К электромагнитной волны Герц определил скорость распространения электромагнитной волны:

Она оказалась равной примерно 300 000 км/с, как и предсказывал Максвелл. Таким образом опыты Герца явились экспериментальным подтверждением гипотезы Максвелла о существовании электромагнитных волн.

Свойства электромагнитных волн.

Свойства электромагнитных волн во многом сходны со свойствами механических волн. На границе раздела двух сред электромагнитные волны частично отражаются, частично проходят во вторую среду. От поверхности диэлектрика электромагнитные волны отражаются слабо, от поверхности металла отражаются почти без потерь (рис. 241).

Закон отражения совпадает с законом отражения механических волн, т. е. угол отражения равен углу падения; падающий луч, отраженный луч и перпендикуляр к поверхности в точке падения лежат в одной плос-. кости. На границе раздела двух сред происходит преломление электромагнитных волн. Закон преломления: отношение синуса угла падения а к синусу угла преломления является величиной постоянной для двух данных сред. Это отношение равно отношению скорости электромагнитных волн в первой среде к скорости во второй среде:

У края преграды или при прохождении электромагнитных волн через отверстие наблюдается явление дифракции волн, т. е. отклонение направления их распространения от прямолинейного (рис. 242).

Когда электромагнитные волны от двух когерентных

источников встречаются в одной точке, то наблюдается явление интерференции.

Опыты с пропусканием электромагнитных волн через систему из двух решеток показывают, что при параллельной ориентации металлических стержней в Двух решетках электромагнитные волны проходят через них (рис. 243), а при взаимно перпендикулярной ориентации стержней волны не проходят. Это доказывает, что электромагнитные волны являются поперечными волнами.

При распространении электромагнитной волны векторы напряженности Е и магнитной индукции В перпендикулярны направлению распространения волны и взаимно перпендикулярны между собой (рис. 244).

Представьте себе, что электрический заряд не просто сместился из одной точки в другую, а приведен в быстрые колебания вдоль некоторой прямой, так что он движется подобно грузу, подвешенному на пружине, но только много быстрее. Тогда электрическое поле в непосредственной близости от заряда начнет периодически изменяться. Период этих изменений, очевидно, равен периоду колебаний заряда. Переменное электрическое поле будет порождать периодически меняющееся магнитное поле, а последнее, в свою очередь, вызовет появление переменного электрического поля уже на большем расстоянии от заряда и т.д.

В окружающем заряд пространстве, захватывая все большие и большие области, возникает система периодически изменяющихся электрических и магнитных полей. На рисунке 6 изображен «моментальный снимок» такой системы полей. Образуется так называемая электромагнитная волна, бегущая по всем направлениям от колеблющегося заряда. В каждой точке пространства электрические и магнитные поля меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее достигнут ее колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами.

Электромагнитные волны излучаются колеблющимися зарядами. При этом существенно, что скорость движения таких зарядов меняется со време-нем, т.е. что они движутся с ускорением. Наличие ускорения — главное условие излучения электромагнитных волн. Электромагнитное поле излучается заметным образом не только при колебаниях заряда, но и при любом быстром изменении его скорости, причем интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд.

Читайте также:  Бытовые снегоуборочные машины фото цены

Векторы и в электромагнитной волне перпендикулярны друг другу и перпендикулярны направлению распространения волны.Электромагнитная волна является поперечной. Если вращать буравчик с правой нарезкой от вектора к вектору , то поступательное перемещение буравчика будет совпадать с вектором скорости волны .

Максвелл был глубоко убежден в реальности электромагнитных волн, но он не дожил до их экспериментального обнаружения. Лишь через 10 лет после его смерти электромагнитные волны были экспериментально получены Герцем.

Ра́дио

(лат. radio — излучаю, испускаю лучи ← radius — луч) — разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Любительская коротковолновая радиостанция.

Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемый сигнал модулирует более высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей — несущей). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).

Телеви́дение

(греч. τήλε — далеко и лат. video — вижу; от новолатинского televisio — дальновидение) — комплекс устройств для передачи движущегося изображения и звука на расстояние. В обиходе используется также для обозначения организаций, занимающихся производством и распространением телевизионных программ. Вместе с радиовещанием является наиболее массовым средством распространения информации (политической, культурной, научно-познавательной или учебной), а также одним из основных средств связи.

Число телевизоров на 1000 человек

Телевидение основано на принципе последовательной передачи элементов изображения с помощью радиосигнала или по проводам. Разложение изображения на элементы происходит при помощи диска Нипкова, электронно-лучевой трубки или полупроводниковой матрицы. Количество элементов изображения выбирается в соответствии с полосой пропускания радиоканала и физиологическими критериями. Для сужения полосы передаваемых частот и уменьшения заметности мерцания экрана телевизора применяют чересстрочную развёртку. Также она позволяет увеличить плавность передачи движения.

Телевизионный тракт в общем виде включает в себя следующие устройства:

1. Телевизионная передающая камера. Служит для преобразования изображения, получаемого при помощи объектива на мишенипередающей трубки или полупроводниковой матрице, в телевизионный видеосигнал.

2. Видеомагнитофон. Записывает и в нужный момент воспроизводит видеосигнал.

3. Видеомикшер. Позволяет переключаться между несколькими источниками изображения: видеокамерами, видеомагнитофонами и другими.

4. Передатчик. Сигнал радиочастоты модулируется телевизионным видеосигналом и передается по радио или по проводам.

5. Приёмник — телевизор. С помощью синхроимпульсов, содержащихся в видеосигнале, телевизионное изображение воспроизводится на экране приемника (кинескоп, ЖК-дисплей, плазменная панель).

Кроме того, для создания телевизионной передачи используется звуковой тракт, аналогичный тракту радиопередачи. Звук передаётся на отдельной частоте обычно при помощи частотной модуляции, по технологии, аналогичной FM-радиостанциям. В цифровом телевидении звуковое сопровождение, часто многоканальное, передаётся в общем с изображением потоке данных

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9493 – | 7458 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *