Меню Рубрики

График погрешности трансформаторов тока

Содержание

В статье про векторную диаграмму трансформаторов тока мы подошли к рассмотрению погрешностей тт. Для определения этих погрешностей возьмем часть той большой векторной диаграммы и увеличим отдельный кусок, как на рисунке ниже. Его еще называют треугольником погрешностей тт.

У трансформаторов тока существует три погрешности – токовая, угловая и полная. Рассмотрим каждую из них в отдельности.

Токовая погрешность трансформаторов тока

На векторной диаграмме она обозначена f или ΔI. Эта погрешность показывает отношение между разностью вторичного и приведенного к вторичному первичного тока к приведенному к вторичному первичному току. Или, более понятно по формуле:

Токовая погрешность выражается в процентах. Она считается отрицательной или, наоборот, в зависимости от знака выражения.

Угловая погрешность трансформаторов тока

Обратимся к векторной диаграмме. Угловая погрешность это угол между током I2 и I’1. Она измеряется в градусах и обозначается буквой δ. Для идеального трансформатора тока эта погрешность равна нулю. Эта погрешность показывает разность действительного и номинального вторичного тока.

Известно соотношение, что если токовая погрешность f

Чтобы сохранить документ в ворде нажми ctrl+s

Испытание трансформаторного масла на пробой

Генераторы Хартли и Колпитца

Единицы измерения физвеличин

2019 Помегерим! – электрика и электроэнергетика

Вычисление погрешности используемых трансформаторов тока – необходимая мера в производстве. Без нее точно рассчитать коэффициент полезного действия и эффективность конструктивных узлов и прибора в целом невозможно. Ошибки бывают различного типа: токовые, угловые и полные. При этом в зависимости от вида меняется и способ вычисления показателя. Главная задача инженера — сделать так, что процент был уменьшен, но не потерять вместе с тем от производительности оборудования.

Что такое погрешность трансформатора

Представляет собой величину, равную отношению заявленной эффективности по плану от той, что проявляется в действительности. Данные не должны превышать номиналы, предусмотренные для их класса точности. При этом бывают нескольких типов измерительных трансформаторов и для каждого из них придуманы свои вычисления.

Проверка данных проводится при помощи приборов. Это необходимо для расчета производительности прибора и составления конструктивных мер для предотвращения этого.

От чего зависит погрешность трансформатора тока

В любом случае величина трансформации, то есть изменения состояния тока, будет отличаться от заявленного в инструкции номинального значения. На сколько точным будет приравниваться зависит от класса точности.

Характеристика зависит от ряда особенностей. В их число входят и используемые материалы изготовления, и принцип работы устройства. Основные причины:

  • сечение магнитопровода;
  • изменение магнитной проницаемости провода;
  • размеры вторичной нагрузки;
  • сопротивление контактов и оборудования;
  • кратность первичной подачи импульса к номинальному значению.

Обратите внимание на то, что причины, по которым появляется явление, зависят от вида устройства и принципа его функционирования.

Например, для силового трансформатора с масляными наполнением будут характерными изменения, а для тс напряжения совершенно другие.

Различается класс точности оборудования, которое используется на производстве. Известны с классом 0,2; 0,5, 1; 3 или 10. Рассчитывается номинальное значение указанной величины довольно просто: это процент от среднего показателя при подсоединении нагрузки на первичку в 100-120 процентах для 1-3 класса и 50-100 процентов для последующих.

Зависимость токовой погрешности от абсолютной магнитной проницаемости

Магнитная проницаемость — величина, которая характеризуется магнитной индукцией и напряженностью поля. Проницаемость определяется конкретной средой.

Читайте также:  Высота потолка в комнате длина реки обь

Понятно, что в зависимости от состояния, состава и температуры этой среды будет меняться показатель. Посмотреть зависимость можно в специальных схемах для различных видов материалов.

Что представляет собой треугольник погрешностей ТТ

Треугольник представляет собой особый вид соединения, основанный на нагрузке на несколько фаз. Вторичные обмотки подключаются в полный или неполный треугольник.

Тип подсоединения зависит от необходимых показателей распределения тока в аварийных условиях и вторичных цепях оборудования. Первичные импульсы ТТ определяются изначально, уже после вычисляют при замыкания вторичных. Сумма определяется как сумма величин в проводах и обмотках каждого типа. В зависимости от векторных фаз происходит рассмотрение — слагаются или вычитаются компоненты.

Виды и правила вычисления погрешности устройств

Современные правила требуют использования устройств с максимальной константой не больше 10 процентов. Иногда бывают исключения — возможно изменение на несколько пунктов свыше, если не происходит смещения релейной защиты.

Токовая

Это вид, определяющийся в коэффициенте трансформации. Представляет собой арифметическую разность между первичным токовым импульсом, который разделен на установленный коэффициент, минус полученный опытным путем вторичный.

Угловая

Угловая является углом, который образует вторичный ток при сдвиге. Положительное значение приобретает только в случае, если первичный опережает вторичный.

Полная

Полная трансформация является суммой вышеизложенных двух показателей. По опытным исследованиям понятно, что основной причиной погрешности является возникновение намагничивания. Если меньше, то и меньше будет величина.

Как построить график погрешности

Графики строятся в зависимости от типа устройства. С схемах указывается не только компоненты, в том числе и инженерные, электрические связи, но и зажимы. Стрелками отмечаются направления работы вторички и первички.

Чем достигается уменьшение погрешности трансформаторов тока

Уменьшение величины возможно в первую очередь с уменьшением показателя намагничивания. Для этой цели трансформатор должен обладать минимальным параметром тока и работать в прямолинейной части намагничивания. Эти критерии достигаются только в случае верного выбора нагрузки, уменьшения кратности первичного тока.

118.. СХЕМЫ ВКЛЮЧЕНИЯ ИЗМЕРИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ.

Измерительные трансформаторы используют главным образом для подключения электроизмерительных приборов в цепи переменного тока высокого напряжения. При этом электроизмерительные приборы оказываются изолированны­ми от цепей высокого напряжения, что обеспечивает безопас­ность работы обслуживающего персонала. Кроме того, изме­рительные трансформаторы позволяют расширять пределы измерения приборов, т. е. измерять большие токи и напряже­ния с помощью сравнительно несложных приборов, рассчи­танных для измерения малых токов и напряжений. В ряде случаев измерительные трансформаторы служат для подклю­чения к цепям высокого напряжения обмоток реле, обеспечи­вающих защиту электрических установок от аварийных режи­мов.

Типы измерительных трансформаторов. Измерительные трансформаторы подразделяют на два типа — трансформато­ры напряжения и трансформаторы тока. Первые служат для включения вольтметров и других приборов, реагиру­ющих на значение напряжения (например, катушек напряже­ния ваттметров, счетчиков, фазометров и различных реле). Вторые служат для включения амперметров и токовых катушек указанных приборов.

Измерительные трансформаторы изготовляют мощно­стью от пяти до нескольких сотен вольт-ампер; они рассчитаны для совместной работы со стандартными при­борами (амперметрами на 1; 2; 2,5 и 5 А, вольтметрами на 100 и В).

Трансформатор напряже­ния. Его выполняют в виде двухобмоточного понижа­ющего трансформатора (рис. 3.33, а). Для обеспече­ния безопасности работы обслуживающего персонала вторичную обмотку тщате­льно изолируют от первич­ной и заземляют.

Читайте также:  Асимметричная раковина в ванную комнату

Рис. 3.33. Схема включения (а) и век­торная диаграмма измерительного трансформатора напряжения (б)

Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору на­пряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, что Ul = U2=U2k.

В действительности ток холостого хода I0 (а также не­большой ток нагрузки) создает в трансформаторе падение напряжения, поэтому, как видно из векторной диаграммы (рис. 3.33, б), и между векторами этих напряжений имеется некоторый сдвиг по фазе δu. В результате при изме­рениях образуются некоторые погрешности.

В измерительных трансформаторах напряжения различа­ют два вида погрешностей:

а) относительную погрешность напряжения

б) угловую погрешность δu; за ее значение принимают угол между векторами и — . Она влияет на результаты измерений, выполненных с помощью ваттметров, счетчиков, фазометров и прочих приборов, показания которых зависят не только от силы тока и напряжения, но и от угла сдвига фаз между ними. Угловая погрешность считается положительной, если вектор опережает вектор .

В зависимости от значения допускаемых погрешностей стационарные трансформаторы напряжения подразделяют на три класса точности: 0,5; 1 и 3, а лабораторные — на четыре класса: 0,05; 0,1; 0,2 и 0,5. Обозначение класса соот­ветствует значению относительной погрешности уи при номинальном напряжении Ulном. Угловая их погрешность составляет 20. 40 угл. мин.

Выпускаемые промышленностью трансформаторы напря­жения сохраняют класс точности при изменении первичного напряжения от 80 до 120% номинального.

Рис. 3.34. Схема включения измерительного трансформатора тока (а), общий вид проходного изолятора (б) и векторная диаграмма (в):

1— медный стержень (первичная обмотка); 2 — вторичная обмотка; 3 — магнитопровод

Для уменьшения погрешностей уи и δи сопротивления обмоток трансформатора и делают по возможности малыми, а магнитопровод выполняют из высококачественной стали достаточно большого поперечного сечения, чтобы в рабочем режиме он не был насыщен. Благодаря этому обес­печивается значительное уменьшение тока холостого хода.

Трансформатор тока. Его выполняют в виде двухобмоточ­ного повышающего трансформатора (рис. 3.34, а) или в виде проходного трансформатора, у которого первичной обмот­кой служит провод, проходящий через окно магнитопровода. В некоторых конструкциях магнитопровод и вторичная обмотка смонтированы на проходном изоляторе, служащем для ввода высокого напряжения в силовой трансформатор или другую электрическую установку. Первичной обмоткой трансформатора служит медный стержень, проходящий вну­три изолятора (рис. 3.34, б).

Сопротивления обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно малы. Поэто­му он практически работает в режиме короткого замыкания, при котором токи I1 и во много раз больше тока I0, и с достаточной степенью точности можно считать, что

В действительности из-за наличия тока холостого хода в рассматриваемом трансформаторе и между векторами этих токов имеется некоторый угол, отличный от 180° (рис. 3.34, в). Это создает относительную токовую по­грешность

и угловую погрешность, измеряемую углом δi, между векто­рами и . Погрешность δi считается положительной, если вектор — опережает вектор .

В зависимости от значения допускаемых погрешностей трансформаторы тока подразделяют на пять классов точнос­ти: стационарные — 0,2; 0,5; 1; 3; 10 и лабораторные — 0,01; 0,02; 0,05; 0,1; 0,2. Приведенные цифры соответствуют допус­каемой для данного класса токовой погрешности при номи­нальном значении тока. Угловая погрешность составля­ет 10. 120 угл. мин.

Читайте также:  В чем заключается градуировка термопары

Для уменьшения токовой и угловой погрешностей магнитопровод трансформатора тока изготовляют из высоко­качественной стали достаточно большого сечения, чтобы в рабочем режиме он был не насыщен (B = 0,06. 0,1 Тл). При этих условиях намагничивающий ток будет мал.

Следует отметить, что размыкание цепи вторичной обмотки трансформатора тока недопустимо. Трансформатор переходит в режим х.х. и его результирующая МДС, в рабочем режиме равная , становится (рис. 3.34, в). В резуль­тате резко (в десятки и сотни раз) возрастает магнитный поток в магнитопроводе, а индукция в нем достигает значения В>2 Тл, что приводит к сильному возрастанию магнитных потерь в стали; при этом трансформатор может сгореть. Еще большую опасность представляет резкое повышение напряжения на зажимах вторичной обмотки до нескольких сотен и даже тысяч вольт. Для предотвращения режима холостого хода при отключении приборов следует замыкать вторичную обмотку трансформатора тока накоротко.

Измерительный тр-р тока (ТТ)- Это спец тр-р,работающий в режиме КЗ и предназначен для расширения пределов измерений приборов, реагир на величину тока(амперметр,ток катушки)

Токовый датчик для измерения параметров переменного тока может рассматриваться как разновидность простого трансформатора тока. Трансформатор по существу имеет две катушки на общем железном сердечнике. Напряжение I1подаётся на катушку В1, наводя через общий сердечник напряжение I2 на катушке В2.

Тот же самый принцип используется в токовом датчике (см. рис.). На замкнутом магнитопроводе в виде клещей замкнутых на проводнике, находится катушка B2 , по которой протекает электрический ток I1.

В1 это просто проводник, на котором пользователь проводит измерения, при количестве обмоток, образуемых проводником – равным единице. Токовый датчик замкнутый вокруг проводника вырабатывает выходной ток, значения которого определяются количеством витков на катушке В2, по формуле:

I2 (выход датчика) = (N1 / N2) x I1, где N1 = 1 или, иначе, Выходное значение датчика = I1/N2 (где N2 это число витков на катушке датчика).

Часто бывает очень трудно измерить I1 непосредственно, так как значение силы тока слишком велико, чтобы подавать его непосредственно на цепь измерительного прибора, или просто потому, что недопустимо разрывать цепь. Для обеспечения приемлемого выходного значения на катушке датчика размещается большое количество витков.

U1-U2-короткозамк контур-размаг тр-р

Количество витков на катушке датчика в большинстве случаев имеют кратные значения (например, 100, 500 или 1000).

Если N2 равно 1000, в этом случае клещи имеют соотношение N1/ N2 или 1/1000, которое обозначается как 1000:1. Ещё один способ выразить соотношение это сказать что выходное значение датчика 1 мА/А – выходное значение 1 мА (I2) для 1А (или 1А@1000А) появляющееся на дисплее датчика. Существует множество других возможных соотношений: 500:5, 2000:2, 3000:1, 3000:5 и так далее – для различного применения. В большинстве случаев токовый датчик используется с цифровым мультиметром. Рассмотрим для примера токовый датчик с соотношением 1000:1 с токовым выходом и соотношением 1мА/A.

Данное соотношение означает, что ток, протекающий через захваты токовых клещей преобразуется в ток на выходе следующим образом: Входной ток проводника

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *