Меню Рубрики

В чем измеряется амперметр

Содержание

Приборы для измерения силы тока

Если в каком-либо проводнике течет ток, то он характеризуется такой величиной, как «сила тока». Сила тока в свою очередь характеризуется количеством электронов, которые проходят через поперечное сечение проводника за единицу времени. Но мы все учились в школе и знаем, что электронов в проводнике миллиарды миллиардов и считать количество электронов было бы бессмысленно.

Поэтому ученые вывернулись из этой ситуации и придумали единицу измерения силы тока и назвали ее «Ампер», в честь французского физика-математика Андре Мари Ампера. Что же собой представляет 1 Ампер? Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение провода проходит заряд, равный 1 Кулону. Или простым языком, все электроны в сумме должны давать заряд в 1 Кулон и они должны в течение одной секунды пройти через поперечное сечение проводника. Если учесть, что заряд одного электрона 1.6х10 -19 , то можно узнать, сколько электронов в 1 Кулоне. А вот для того, чтобы измерять амперы, ученые придумали прибор и назвали его «амперметром».

Амперметр – это прибор для измерения силы тока в электрической цепи. Любой амперметр рассчитан на измерение токов определенной величины. В электронике в основном оперируют микроАмперами (мкА), миллиАмперами (мА), а также Амперами (А). Следовательно, в зависимости от величины измеряемого тока приборы для измерения силы тока делятся на амперметры (PA1), миллиамперметры (PA2) и микроамперметры (PA3).

На принципиальных схемах амперметр, как измерительный прибор обозначается вот так.

Какие бывают амперметры?

Первый тип амперметра – аналоговый. Их ещё называют стрелочными. Вот так они выглядят.

Такие амперметры имеют магнитоэлектрическую систему. Они состоят из катушки тонкой проволоки, которая может вращаться между полюсами постоянного магнита. При пропускании тока через катушку, она стремится установиться по полю под действием вращающего момента, величина которого пропорциональна току. В свою очередь повороту катушки препятствует специальная пружина, упругий момент которой пропорционален углу закручивания. При равновесии эти моменты буду равны, и стрелка покажет значение, пропорциональное протекающему через нее току. Иногда, для того, чтобы увеличить предел измерения, параллельно амперметру ставят резистор определенной величины, рассчитанной заранее. Это так называемый шунтирующий резистор – шунт.

Про шунтирующее действие измерительных приборов уже подробно рассказывалось в статье про вольтметр. Там же затрагивалось такое понятие, как входное сопротивление прибора. Так вот, применительно к вольтметру, его входное сопротивление должно быть как можно больше. Это необходимо для того, чтобы прибор не влиял на работу схемы при проведении измерений и выдавал точные результаты.

Применительно к амперметру складывается обратная ситуация. Так как амперметр для проведения измерений включается в разрыв электрической цепи, то необходимо стремиться к тому, чтобы его внутреннее сопротивление протекающему току было минимальным. Грубо говоря, сопротивление между его измерительными щупами должно быт мало. В противном случае, для электрической цепи амперметр будет представлять резистор. А, как известно, чем больше сопротивление резистора, тем меньший ток через него проходит. Таким образом, при включении амперметра в измерительную цепь, мы искусственно понижаем ток в этой цепи. Понятно, что в таком случае, показания амперметра будут некорректные. Но не стоит расстраиваться, так как измерительная техника разрабатывается с учётом всех этих особенностей.

Это лишь ещё один намёк на то, что при обращении с мультиметрами стоит внимательно относиться к выбору режима работы и правильному замеру тех или иных величин. Несоблюдение этих правил может привести к порче прибора.

Аналоговые амперметры до сих пор используются в современном мире. Их плюс таковы, что им не требуется независимое питание для выдачи результатов, так как они используют питание замеряемой цепи. Также они удобны при отображении информации. Думаю, лучше наблюдать за стрелкой, чем за цифрами. На некоторых амперметрах есть винтик корректировки для точного выставления стрелки прибора к нулю. Минусы – это большая инертность, то есть для стрелки прибора нужно какое-то время, чтобы она пришла в устойчивое состояние. Хоть этот недостаток в современных аналоговых приборах проявляется слабо, но он все-таки есть.

Второй тип амперметра – это цифровой амперметр. Он состоит из аналого-цифрового преобразователя (АЦП) и преобразует силу тока в цифровые данные, который потом отображаются на ЖК-дисплее.

Цифровые амперметры лишены инертности, и выдача результатов измерений зависит от частоты процессора, который выдает результаты на дисплей. В дорогих цифровых амперметрах он может выдать до 1000 и более результатов в секунду. Также цифровые амперметры требуют меньше габаритов для установки, что немаловажно в современной аппаратуре. Минусы – это то, что для измерения им требуется собственный источник питания, который питает все внутренние узлы и микросхемы прибора. Есть, конечно, и такие цифровые амперметры, которые используют питание измеряемой цепи, но они все равно редко используются в виду своей дороговизны.

Читайте также:  Вытяжка elikor оптима wood

Амперметры делятся на амперметры для измерения силы тока постоянного напряжения и для измерения силы тока переменного напряжения. Но, допустим, у вас нет амперметра, чтобы измерить силу тока переменного напряжения. Что же тогда делать? Можно собрать очень простую схемку. Выглядит она вот так:

Но чтобы не собирать самостоятельно измерительную схему и доводить её до ума, купите себе мультиметр. В хорошем мультиметре есть функции измерения силы тока, как для постоянного, так и для переменного напряжения.

Схема для измерения силы тока выглядит вот так:

Это означает, что амперметр мы должны подключать последовательно нагрузке.

Для того чтобы правильно измерить силу тока, нам надо знать, какое напряжение вырабатывает источник питания: переменное или постоянное. Если будем замерять силу тока постоянного напряжения, то и амперметр нам нужен для измерения силы тока постоянного напряжения, а если для переменного, то и амперметр нужен соответствующий. В нашем случае нагрузкой может быть любой прибор или схема, которая потребляет ток. Это может быть лампочка, сотовый телефон или даже компьютер.

Измерение силы тока с помощью амперметра.

Давайте рассмотрим на практике, как замерять силу тока с помощью цифрового мультиметра DT-9202A.

В красном кружочке у нас буковка «А

» означает, что ставя переключатель на этот участок, мы сможем замерить силу тока переменного напряжения, а ставя переключатель на секцию со значком «А=» (в синем кружке), мы сможем замерять силу тока постоянного напряжения.

Чтобы измерить силу тока до 200 мА (200m) как переменного, так и постоянного напряжения, нужно поставить щупы такого мультиметра в определенные клеммы:

Если же мы будем измерять силу тока более чем в 5 Ампер, то я рекомендую вам переставить щуп в другую клемму:

Если даже примерно не знаете, сколько должно потреблять ваше устройство или нагрузка, то всегда ставьте щуп и переключатель на самый большой предел измерения. Тем самым вы сохраните своему прибору жизнь.

На фото снизу я измеряю силу тока, которая кушает лампочка на 12 Вольт. С трансформатора я снимаю переменное напряжение 10 Вольт. Как мы видим, сила тока, потребляемая лампочкой – 1.14 Ампер. Обратите особое внимание, что переключатель мультиметра поставлен на измерение силы тока переменного напряжения (А

А вот так мы замеряем постоянный ток, который потребляет автомобильная сирена. Орет она так, что даже уши закладывает .

Обратите также внимание, так как у нас аккумулятор постоянного напряжения 12 Вольт, то и переключатель режимов мультиметра мы поставили на измерение постоянного тока.

А вот столько у нас кушает лампочка: 1.93 Ампера. Здесь замеряется постоянный ток, который потребляется лампой накаливания от аккумулятора.

Никогда не подключайте амперметр в розетку без всякой нагрузки! Тем самым вы просто-напросто спалите прибор. Как уже говорилось, амперметр обладает малым входным сопротивлением.

При измерении силы тока не касайтесь голых проводов, а также оголённых частей измерительных щупов. Это исключит электрический удар током. Будьте внимательны со схемой подключения амперметра.

Если Вы хотите узнать больше про измерения электрических величин, то загляните на сайт Практическая электроника. Там вы найдёте много познавательной информации по электронике.

Если взять амперметр переменного тока, можно с легкостью измерить силу тока. Учитываются типы приборов, назначение, маркировка. Важно рассмотреть устройство и схему амперметра.

Амперметр переменного тока

Амперметром постоянного тока называют прибор, который показывает силу тока в цепи. Показатель измеряется в амперах. Из этих данных можно узнать о магнитодвижущей силе, понять электрический потенциал. Изобретателем устройства является И. Швейгер, университетский профессор из Галле. Произошло это еще в XIX веке. И тогда прибор носил название «токовый гальванометр».

Что измеряют амперметром

Физическая величина амперметра демонстрирует силу тока в цепи. Ампер привязан к международной системе единиц. Начиная с 1948 года, определена его формула. В ней учитывается магнитодвижущая сила плюс проводимость проводников.

Интересная информация! Есть разделение на кратные и дольные единицы. Опираясь на международное бюро мер и весов, амперметр способен показывать значения в декаамперах, гектоамперах, килоамперах и так далее.

Сфера применения широка, и электрики обязательно держат прибор под рукой. Цифровые, а также аналоговые модификации востребованы в промышленности. Еще встречаются модификации для потребности народного хозяйства. В энергетической области устройства позволяют определить силу тока на выходе у электротехники.

Строители используют приборы на площадках, чтобы провести проводку в домах и сооружениях. Автотранспорт, как известно, также функционирует на электронике. Устанавливая бортовой компьютер, важно знать силу тока. Отдельное направление – научные институты. Работая с радиоэлектроникой, важно подключать электрооборудование. Блоки питания подлежат тестированию, и чтобы проверить регулятор, важно использовать амперметр.

Принципы работы

Принцип работы зависит от типа модификации, а для этого стоит рассмотреть устройство амперметра постоянного тока.

Читайте также:  2904D datasheet на русском

Основные элементы механической модели:

  • рамка;
  • наконечники;
  • центральная катушка;
  • подключенный сердечник;
  • магнит;
  • пружина.

Если рассматривать магнитоэлектрические модели, они включают следующие элементы:

Принцип работы механических модификаций построен на полярности подключения к цепи. На стрелку оказывается воздействие магнитного поля. Направление грузика зависит от амплитуды импульсов. При возрастании электричества стрелка отклоняется в левую сторону.

Амперметр – типы

В зависимости от конструкции различают следующие амперметры:

  • электродинамические;
  • ферродинамические;
  • электромагнитные;
  • электрические.

Классификация по способу вывода информации:

Если оценивать рынок, предлагается большое количество электродинамических амперметров. Измерители изготавливаются с катушками, имеется ряд особенностей:

  • широкий диапазон работы;
  • подходит для цепи переменного тока;
  • неподвижная катушка;
  • точный контрольный прибор.

Устройства востребованы в лабораториях, частных предприятиях. Они функционируют при частоте максимум до 200 Гц. К слабым сторонам стоит отнести повышенную чувствительность к перегрузкам. Если взглянуть на схему электродинамического амперметра, учитывается использование проводных конденсаторов.

Преобладают рабочие резисторы повышенной проводимости. Если есть потребность в приобретении, стоит обратить внимание на измеряемые величины. Также в расчет берется показатель сопротивления. При подключении амперметра в цепи определяется воздействие силы тока от 1 ампера. Эксперты полагают, что электродинамические приборы обеспечивают наиболее высокую точность.

Класс оборудования должен указываться производителем. Также встречаются модели с экранированным, статическим построением компонентов. Если взглянуть на панель, может встречаться различное разделение по амперам.

Важно! Ферродинамический прибор поставляется с подвижными и неподвижными катушками.

  • частотная погрешность;
  • четкая позиция сердечника;
  • широкий температурный диапазон;
  • проблема с намагничиванием;
  • подходит для щитовых установок.

Электрики выбирают их за счет высокого класса надежности. Амперметры данного типа являются компактными. Они способны использоваться на плоской поверхности или монтироваться на рейку. Конфигурация предоставляется с поворотными механизмами либо рядом подшипников. За основу используется пластик, есть варианты с металлической защитой.

Сердечники поставляются с дополнительной обмоткой, крепление осуществляется на винтах. Серийные щитовые приборы производятся с замкнутыми магнитопроводами. Сердечник у таких конструкций выполнен в виде сплошного цилиндра, на котором надето кольцо. Подвижная рамка служит в качестве измерительной обмотки.

Сердечник зафиксирован в горизонтальном положении. Также у амперметров используется подшипник качения, который крепится рядом с фланцем. Электромагнитный тип имеет ряд преимуществ:

  • компактность;
  • высокая точность;
  • подвижный сердечник;
  • учет изменения магнитного поля;
  • простота устройств.

Интересно! Амперметры поставляются с ферримагнитными сердечниками, которые установлены по центру.

Катушка может иметь выпуклую либо плоскую форму. В виде обмотки представлена толстая проволока, которая крепится на каркасе. Между элементами предусмотрен небольшой зазор. Под каркасом используется ферромагнитная пластина, расположенная в вертикальном положении. Пружина закреплена в корпусе и служит противодействующей силой стрелки. К числу особенностей стоит приписать такое:

  • нет проблем с перемагничиванием;
  • минимальный угол отклонения;
  • различные измеряемые величины;
  • дешевизна продукции;
  • подходит для щитовых приборов.

Аналоговый амперметр считается устаревшим, однако такое заявление еще преждевременно. Большинство модификаций работают в широком диапазоне, отличаются повышенной точностью.

  • масса от 0.2 кг;
  • класс точности 1.5;
  • средний размер 80 на 80 мм.

Аналоговые модели просты в монтаже, используются в пластиковом корпусе. Особенности цифровых амперметров:

  • разнообразие типов;
  • интересный дизайн;
  • различные способы монтажа;
  • высокая точность.

В цепи переменного тока модели демонстрируют стабильную работу. Модули устанавливаются в источниках питания, используются платы на 4–5 выводов.

  • напряжения от 3.5 вольт;
  • максимальный ток до 20 а;
  • вес от 20 грамм;
  • средний размер 40 на 30 мм;
  • минимальная температура – 15 градусов;
  • точность измерения от 0.5 процента;
  • частота обновления 150 мс за один раз;
  • максимальная температура + 70 градусов.

Цифровые амперметры Emas, Feron, GTM, Hager могут характеризоваться, как профессиональные. Некоторые подходят для лабораторий, другие – востребованы в промышленности.

Амперметры Ам-2 DigiTOP

Прибор данной серии работает в сети переменного тока с частотой не более 50 Гц.

  • максимальный ток – 50 ампер;
  • электроцепь – однофазная;
  • погрешность не более 1%;
  • максимальная температура эксплуатации 55 градусов;
  • производитель – Украина;
  • минимальная температура – 35 градусов;
  • нижний предел – 1 амперметр.

Установка относится к электронным, есть цифровое табло. Она используется на промышленных предприятиях, где установлено электрооборудование. Прибор может быть монтироваться на рейку шириной в 35 мм. Подключение осуществляется согласно схеме. Для питания конструкции не требуется отдельный аккумулятор, источником энергии выступает сеть.

Амперметр лабораторный Э537

В лабораториях остаются востребованными товары представленной серии. Они служат для измерения силы тока в цепи переменного тока.

  • класс точности – 0.5;
  • масса – 1.2 кг;
  • минимальная частота – 45 Гц;
  • длина, ширина –140 на 195 мм.

Прибор выделяется высокой точностью и качеством элементов. В лабораториях его можно подключать к электрооборудованию, значение показывается в миллиамперметрах.

Амперметр СА3020

В среде цифровых приборов выгодно смотрится представленный щитовой вариант. Работает в цепи переменного тока.

  • минимальная частота – 47 Гц;
  • постоянное напряжение – 120 вольт;
  • потребляемая мощность – 4 В;
  • масса – 0.5 кг;
  • максимальная частота – 65 Гц;
  • напряжение сети – от 85 вольт.
Читайте также:  Дина гарипова евровидение 2013 песня слушать

Прибор имеет высокую степень защиты от замыканий, плюс к этому – устройство очень простое в подключении.

Устройство прибора

Цифровой прибор включает в себя плату, дисплей, а также контакт. Если детальнее рассматривать блок управления, предусмотрены следующие компоненты:

  • компаратор;
  • операционный усилитель;
  • регулятор;
  • конденсаторы;
  • резисторная сборка;
  • резонатор.

Шкала и схема амперметра переменного тока

На схеме видны элементы, отвечающие за уровень напряжения. Распространенными считаются варианты с последовательным подключением резисторов. Максимальное падение напряжения происходит на обмотке.

Интересно! Диоды используются кремниевого типа, они отвечают за стабильность показаний.

Также на схеме показана дополнительная обмотка изоляции. За катушкой трансформатора идут конденсаторы. Кремниевый диод служит для защиты показаний. В сложных схемах амперметр используется с выпрямителями.

Выше описано понятие прибора переменного тока. Рассказана сфера применения, особенности устройств. Показан принцип работы и преимущества конкретных приборов.

Амперме́тр (от ампер + μετρέω «измеряю») — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора.

В электрическую цепь амперметр включается последовательно [1] с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения [2] . Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания): это приведёт к короткому замыканию!

Бесконтактное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется токоизмерительные клещи (на фото).

Содержание

Общая характеристика [ править | править код ]

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Приборы со стрелочной головкой [ править | править код ]

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Приборы с цифровым индикатором [ править | править код ]

В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.

Принцип действия стрелочной измерительной головки [ править | править код ]

Принцип действия самых распространённых в амперметрах систем измерения:

  • В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки прямо пропорционален силе тока, поэтому шкала магнитоэлектрического прибора линейна. Направление поворота стрелки зависит от направления протекающего через рамку тока, поэтому магнитоэлектрические амперметры непригодны для непосредственного измерения силы переменного тока (стрелка будет дрожать возле нулевого значения), и требуют правильной полярности подключения в цепи постоянного тока (иначе стрелка будет отклоняться левее нуля).
  • В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
  • В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь [ править | править код ]

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано – чаще всего 75 мВ). При высоких напряжениях (выше 1000В) – в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока – магнитные усилители.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *